30 research outputs found

    FPGA-accelerated group-by aggregation using synchronizing caches

    Full text link
    Recent trends in hardware have dramatically dropped the price of RAM and shifted focus from systems operating on disk-resident data to in-memory solutions. In this environment high memory access latency, also known as memory wall, becomes the biggest data processing bottleneck. Traditional CPU-based architectures solved this problem by introducing large cache hierarchies. However algorithms which experience poor locality can limit the benefits of caching. In turn, hardware multithreading provides a generic solution that does not rely on algorithm-specific locality properties. In this paper we present an FPGA-accelerated implementation of in-memory group-by hash aggregation. Our design relies on hardware multithreading to efficiently mask long memory access latency by implementing a custom operation datapath on FPGA. We propose using CAMs (Content Addressable Memories) as a mechanism of synchronization and local pre-aggregation. To the best of our knowledge this is the first work, which uses CAMs as a synchronizing cache. We evaluate aggregation throughput against the state-of-the-art multithreaded software implementations and demonstrate that the FPGA-accelerated approach significantly outperforms them on large grouping key cardinalities and yields speedup up to 10x

    A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes

    Get PDF
    Sagittal craniosynostosis consists of premature fusion (ossification) of the sagittal suture during infancy, resulting in head deformity and brain growth restriction. Spring-assisted cranioplasty (SAC) entails skull incisions to free the fused suture and insertion of two springs (metallic distractors) to promote cranial reshaping. Although safe and effective, SAC outcomes remain uncertain. We aimed hereby to obtain and validate a skull material model for SAC outcome prediction. Computed tomography data relative to 18 patients were processed to simulate surgical cuts and spring location. A rescaling model for age matching was created using retrospective data and validated. Design of experiments was used to assess the effect of different material property parameters on the model output. Subsequent material optimization—using retrospective clinical spring measurements—was performed for nine patients. A population-derived material model was obtained and applied to the whole population. Results showed that bone Young’s modulus and relaxation modulus had the largest effect on the model predictions: the use of the population-derived material model had a negligible effect on improving the prediction of on-table opening while significantly improved the prediction of spring kinematics at follow-up. The model was validated using on-table 3D scans for nine patients: the predicted head shape approximated within 2 mm the 3D scan model in 80% of the surface points, in 8 out of 9 patients. The accuracy and reliability of the developed computational model of SAC were increased using population data: this tool is now ready for prospective clinical application
    corecore